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TECHNICAL PAPER 

MODELING DIGITAL CONTROL SYSTEMS WITH 
MA-PREFILTERED MEASUREMENTS 

1. INTRODUCTION 

The usual problem posed in books on digital control systems is to find a feedback controller for a 
continuous-time plant driven by a zero-order-hold with a sampled output as shown in Figure 1 (Jacquot [ I ] ,  
p.  126). Here x(t) is an nxl state vector, g(k) is an rxl control input vector, yl(k) is an mxl output or mea- 
surement vector, F is an nxn system matrix, G is an nxr control matrix, and C, is an mxn output matrix. 
Since yl(k) = Clx(k) where k is the usual shorthand notation for time kT, yl(k) represents an instantaneous 
measure of the system at the sampling instant kT. Hence, the plant in Figure 1 will be regarded as having 
instantaneous measurements for outputs. It is well known that this system can be modeled at the sampling 
instants by the set of discrete state equations 

x(k+ 1) = Ax(k) + B u(k) (1 )  

where A and B are constant matrices (Jacquot [ I ] ,  p. 127). 

Figure 1.  Continuous-time plant driven by a zero-order-hold with 
instantaneous measurements. 

Unfortunately, not all linear time-invariant digital control systems found in the real world have 
plants which fit the model shown in Figure 1. For example, there exists systems in which the output, rather 
than being an instantaneous measure of the system at the sampling instants, represents an average measure 
of it over the time interval between samples. Such systems can be found in the aerospace field wherever 



startrackers and some state-of-the-art rate gyroscopes and accelerometers are used, to name a few (Polites 
[2], p. 6 ) .  In one system of this type, sets of discrete measurements are averaged to produce discrete outputs 
as shown in Figure 2. The continuous-time output _z(t) is sampled every T / ~  seconds. Every N samples are 
averaged to generate the averaged measurement vectoryA(kT), every T seconds. In Figure 2, z(t) and yA(kT) 
are both pxl vectors; CA is a pxn output matrix. Note, the plant in Figure 2 allows for the possibility of 
instantaneous measurements also. yl(kT) is an mxl instantaneous measurement vector and so Cr is an mxn 
output matrix. Previously, Polites [2] developed discrete state variable formulations for the plant in Figure 
2 which have the same general form as equations (1 )  and (2). 

=- CI T 

Figure 2. Continuous-time plant driven by a zero-order-hold with 
instantaneous and averaged measurements. 
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This brings us to a statement of the problem of this paper. Namely, what are discrete state variable 
representations for the plant with MA-prefiltered measurements shown in Figure 3? With these, the control 
system engineer can apply existing techniques to accurately design digital feedback controllers for this type 
plant. Without these, he must resort to approximate methods which could be either less accurate or else 
very time consuming if iterative. Fortunately, the latter will not be necessary, because the former is made 
possible by the formulations derived in Section 111. Prior to this, Section I1 reviews some results to date for 
the plant with instantaneous measurements shown in Figure 1.  These will be utilized in Section 111. Section 
IV presents an example which illustrates how to obtain the coefficient matrices for each formulation 
derived in Section 111. Section V contains the conclusions and final comments. 

II. PRELIMINARY 

The plant in Figure 
(2) where 

can be modeled at the sampling instants by the discrete state equations ( 1 )  and 

+(t) = L-' [(SI-F)-'] , (3) 

and 

B = [JT+(h)dh] G 

as in Reference 1 ,  p. 126. +(t) and A are nxn matrices while B is an nxr matrix. A and B can be determined 
analytically using equations (3) to (5). An alternative approach, which is also quite suitable for numerical 
computation, is as follows [4]. +(t) and J- + ( A )  dh can be expressed in the form of matrix exponential 
series as 

and 

3 



respectively. From equations (6) and (7) ,  

7 

where I is an nxn identity matrix. Hence, JOT +(A) dA can be determined using equation (7) with t = T and 
this result substituted into equation (8) to get +(TI. With these results, A and B can be found using equations 
(4) and ( 5 ) .  

111. STATE VARIABLE REPRESENTATIONS FOR PLANTS WITH 
MA-PREFILTERED MEASUREMENTS 

For the plant in Figure 3, 

as in Jacquot [ I ] ,  p.  125. Let 

Let t = kT - j(T/N) and to = (k - l)T where k = 0,1,2,. . . and j = 0,l ,.. . , N - 1 .  Hence, equation (9) 
can be written as 

4 



T kT-j(T/N) T T 
x(kT - j-) = +(T - j-)x[(k- ])TI + .f +(kT - j- - T)GE(T)dT . N N -  (k-l)T N 

Since 

it follows that equation (12) can be written as 

From equations (1 3) and (1 3, 

Since 

u( t )=g[(k- l )T]  , ( k - l ) T < t < k T  , 

equation (16) can be written as 

T 
N- I N- 1 kT-j(T/N) 

_yF(k) = [ E HjCF$(T-jx)]x[(k-  1)T] + [ E HjCFJ $(kT-j- N - ~)d~]Gl_( [ (k-  1)T] . (18) 
j=O N , -  j=O (k-l)T 

Consider the second term in the right hand side of equation (1 8). Using the transformation 
A = kT - j(T/N) - T in it, equation (1 8) becomes 

N- 1 N- 1 T-j (T/N) 

Ydk) = [ Hj CF +(T-J$)] d ( k -  1)T] + [ E Hj CF .f +(X)dA] G g[(k- l)T] . (19) 
j=O j=O 0 

5 



Let 

N- I 

and 

From equations (19) to (21), 

using the standard shorthand notation for kT. Letting 

implies that 

For the plant in Figure 3, equation (1) applies just as it does for the plant in Figure 1 .  Using it and equations 
(lo), (1  l ) ,  (23), and (24), the discrete state equations for the plant in Figure 3 can be written as 

6 



A, B, D + ,  and E +  can be evaluated analytically usingequations (3), (4), ( 5 ) ,  (20), and (21). An alternative 
approach, which can be either analytical or numerical, is as follows. Let t = T- j(T/N), 
j = 0, 1 ,. . . ,N - 1 and use equation (7) to determine p-J(T”) +(X)dh, j = 0, 1 ,. . . ,N - 1 .  Use these results 
in equation (8) to get (PF - j(T/N)], j = 0,1,. . . ,N - 1 .  At this point, D+ and E+ can be found using 
equations (20) and (21). A and B can be evaluated using the procedure outlined in Section 11. 

Notice in the formulation given by equations (25) and (26), there are (n + q) states where n is the 
number of states in x(t), and hence x(k), and q is the number of prefiltered measurements in yF(k). Hence, 
this formulation has (n + q) eigenvalues, which are the eigenvalues of AT, in equation (25). It is straightfor- 
ward to show that n of these are the eigenvalues of A and the other q are zero. 

For the special case in which Hj, j = 0, I ,. ..,N-1 are pxp matrices such that 

, j = O , l ,  ..., N-1 
1 

’ N  
H. = - I  

where I is a pxp identity matrix, the MA-prefiltered measurements degenerate to simple averaged mea- 
surements. In this case, it follows from equations (20), (21), and (27) that 

where 

N- 1 
A+ = 1 N j = o  + ( ~ - j $ )  

and 

where 

N-1 T-j(T/N) 
B +  = [i 4(X)dX]G . 

J = o  0 

7 
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These results match those previously published by Polites [2] for digital control systems with averaged 
measurements. 

For the plant in Figure 3, an alternative formulation to equations (25) and (26) can be derived by 
letting t = kT-j(T/N) and to = kT in equation (9) where k = 0,1 ,2 , .  . . and j = 0,1,. . . ,N-1. Hence 
equation (9) becomes 

kT-j(T/N) 
x (kT-j I) = + ( - j  $) x(kT) + s + (kT-j $- - T )  Gu(T)dT . 

kT N 

From equations (12), (14), (17), and (28), 

N- 1 N- 1 kT-j(T/N) 

?'F(k) = H j c ~ d )  (-J-$)] -t [ 2 HjCFJ + (kT-j?- - T )  d~]Gg[(k-- l )T]  . 
(29) 

j=O j=O kT N 

Consider the second term in the right hand side of equation (29). Using the transformation A = kT - 
j(T/N)-T in it, equation (29) becomes 

N- 1 N- 1 -j(T/N) 
YF(k) = [ HjcF+(-j g)] x(kT) + [ HjCFJ +(A)dX] Gg[(k- 1)T] , 

j=O j = O  0 

Let 

and 

N- 1 -j(T/N) 
E- = [ C HjCpJ 

j=O 0 
+(h)dX] G . 

From equations (30) to (32), 

I &(k) = D-x(k) + E-g(k- 1 )  , (33) 



(34) 

using the standard shorthand notation for kT. Letting 

y(k+ 1) = u(k) 

implies that 

yF(k) = D-&) + E-q(k) - . (35) 

From equations ( I ) ,  (lo), (1  l ) ,  (34), and ( 3 9 ,  the alternative set of discrete state equations for the plant in 
Figure 3 is 

A, B, D-, and E- can be evaluated analytically using equations (3), (4), ( 5 ) ,  (3 l ) ,  and (32). An alternative 
approach, which can be either analytical or numerical, is as follows. Let t = - j(T/N), j = O,l, .  . . ,N- 1 
and use equation (7) to determine .f$T”) +(h)dh, j = 0, 1 ,. . . ,N- 1 .  Use these results in equation (8) to get 
$[-j(T/N)J,j = O,1,  ..., N-1. Atthispoint, D_andE_canbefoundusingequations(3l)and(32). AandB 
can be evaluated using the procedure outlined in Section 11. 

Notice in the formulation given by equations (36) and (37), there are (n + r) states where n is the 
number of states in x(t), and hence x(k), and r is the number of control inputs in !(k). Hence, this formula- 
tion has (n + r) eigenvalues, which are the eigenvalues of AT2 in equation (36). It is straightforward to show 
that n of these are the eigenvalues of A and the other r are zero. 

For the special case in which Hj, j = 0,1,. . . ,N-I ,  are pxp matrices as in equation (27), the MA- 
prefiltered measurements degenerate to simple averaged measurements. In this case, it follows from 
equations (27), (31), and (32) that 
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where 

and 

where 
N- 1 -j(T/N) 

6- = [ +(X)dX] G . N j = O  0 

These results match those previously published by Polites [2] for digital control systems with averaged 
measurements. 

Now suppose the plant in Figure 3 has the prefiltered 'measurement vector modified as shown in 
Figure 4. From Figure 4, 

Furthermore, equations (36) and (37) also apply to the plant in Figure 4. Eliminating T(k) - and yF(k) - in 
equations (36) to (38) yields the discrete state equations 

Compare equations (39) and (40) for the plant in Figure 4 with equations ( 1 )  and (2) for the plant in 
Figure 1 .  Notice that the plant equations ( 1 )  and (39) are the same. Only the output equations (2) and (40) 
are different. Obviously, the discrete state equations (39) and (40) for the plant in Figure 4 have n states and 
n eigenvalues, which are the eigenvalues of A .  

10 



G[(k-l )TI * DELAY - 
IV. AN EXAMPLE 

E- 

Consider the double integrator plant in Figure 5 where the instantaneous measurement yr(kT) 
measures xl(kT) and the MA-prefiltered measurement yF(kT) estimates icI(kT) = xz(kT). This example is 
rather basic in relation to the kind of problems the formulations in Section I11 can handle. However, it is 
chosen for pedagogical reasons to illustrate the basic procedures one uses to obtain discrete state variable 
models for plants with MA-prefiltered measurements using the formulations in Section 111. 

Comparing Figures 3 and 5, 

F =  

G =  

0 0  'I ' 

0 

"1 1 ' 

CI = 1 1  01 9 (43) 

(44) 
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Figure 5 .  Plant for the example. 

2 H, = - 
T '  

and 

2 
T 

H ,  = -- 

Utilizing equations (7), (8), and (41), 

(45) 

and 

From equations (4), (3, (42), (47), and (48), 

.[a :] 



and 

B =[y2] . 
Since N = 2 in equations (20) and (21), it follows that 

and 

From equations (42), (44) to (48), (51), and (52), 

D +  = [0 11 

and 

3 
E + = - T  . 

4 

(53) 

(54) 

Utilizing equations (43), (49), (50), (53), and (54), the discrete state equations for the plant in Figure 5 can 
be expressed in terms of equations (25) and (26) with 

13 



and 

c 

T2 
2 

T 

3 
4 

- 

- T  
- 

A check will show these state equations to be observable and controllable for T > 0. 

Utilizing equations (31) and (32) with N = 2, 

and 
0 -(T/2) 

E- = [ H,CFJ  +(A) dA + HI C F J  +(A) dA] G 
0 0 

Making the proper substitutions into equations (55 )  and (56) yields 

D- = [0 13 

and 

E - = - -  T . 
4 
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Utilizing equations (43), (49), (50) ,  (57), and (58 ) ,  the discrete state equations for the plant in Figure 5 can 
be expressed in terms of equations (36) and (37) with 

[BT21 = 

and 

1 

0 

0 

T2 
2 

T 

1 

- 

T O  

1 0  

0 0  

- TI4 O I '  

0 

1 

A check will show these state equations to be observable and controllable for T > 0. 

If the plant in Figure 5 is modified according to Figure 4 where E- is given by equation ( 5 8 ) ,  the 
result is shown in Figure 6. Utilizing equations (43), (49), (50), and (57), the discrete state equations for the 
plant in Figure 6 can be expressed in terms of equations (39) and (40) with 

15 



and 

. 
x2 = X I  

u(k'  + ZOH t $ 'dt  0 =-  $'dt  0 ,  

Again, a check will show these state equations to be observable and controllable for T > 0. One may 
recognize these to be the discrete state equations for the double integrator plant with two instantaneous 
measurements as shown in Figure 7. Hence in Figure 6, x2(kT) is being observed by sampling xl(t) every 
T/2 seconds, prefiltering the samples with a backward difference equation, and modifying the result as 
shown in Figure 6. 

x1  Y 11 (kT) < 

Figure 6. Plant in Figure 5 with a modified prefiltered measurement. 

I 16 



V. CONCLUSIONS 

Two different discrete state variable formulations were derived for the continuous-time plant driven 
by a zero order hold with a combination of instantaneous and MA-prefiltered measurements. This plant is 
shown in Figure 3 and the discrete state variable formulations are presented in equations (25), (26), (36), 
and (37). The first formulation has (n + q) states where n is the number of states in .u(t), and hence x(k), and 
q is the number of prefiltered measurements in yF(k). The second formulation has (n + r) states where r is 
the number of control inputs in u(k). If the prefiltered measurement vector is modified as shown in Figure 4, 
a third formulation can be derived as shown in equations (39) and (40). This one has n states and the same 
plant equation as equation (1) for the plant in Figure 1 .  

With regard to which formulation is the best to use for modeling a given plant with MA-prefiltered 
measurements, the following advice is offered. Choose the one which yields the least number of states in 
the resulting discrete state equations. In general, this is the formulation which has n states, equations (39) 
and (40). However, this formulation does require modifying the prefiltered measurement vector as shown 
in Figure 4. If this is either impossible or else undesirable, for whatever reason, then choose the formula- 
tion, from the remaining two, which yields the fewest number of states. Hence, if the plant in question has 
fewer prefiltered measurements than control inputs (i.e., q < r), choose the formulation which has (n + q) 
states, equations (25) and (26). If the plant has fewer control inputs than prefiltered measurements (i.e. , r < 
q),  choose the formulation which has (n+r )  states, equations (36) and (37). If the number of prefiltered 
measurements equals the number of control inputs (i.e. , q = r), the choice is arbitrary. By following these 
guidelines, the resulting set of discrete state equations is more likely to be observable and controllable, plus 
there will be fewer states and, hence, fewer eigenvalues to contend with in designing the feedback 
controller. 

Having the formulations derived in this paper, the control system engineer can apply standard avail- 
able design techniques to accurately design a digital feedback controller for any plant which fits the model 
shown in Figure 3. He does not have to resort to approximate methods which may be either less accurate or 
else time consuming, if iterative procedures are required. 
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